

Produtos para Eletrificação

Nexus II Manual do usuário

Índice

1. Introdução	3
2. Instalação	4
2.1. Visão geral	4
2.2. Diagramas de fiação	4
2.3. Montagem	5
3. Interface do usuário	6
3.1. Visão geral	6
3.2. Indicação	7
3.3. Configuração	8
4. Configurações do medidor	10
4.1. Habilitando a configuração	10
4.2. Configurando o medidor	10
4.2.1. Primário do TC	10
4.2.2. Primário do TP	10
4.2.3. Secundário do TP	10
4.2.4. Tipo de conexão	11
4.2.5. Faixa de valores de energia	11
4.2.6. Baud rate	11
4.2.7. Formato do Byte	11
4.2.8. Endereço para comunicação	12
4.2.9. Revisão do firmware	12
4.2.10. Idioma	12
4.2.11. LED do pulso de energia	12
4.3.12. Contador de configurações críticas	12
5. Comunicação	13
5.1. Instalação	13
5.2. Protocolo	13
5.3. Fatores de conversão	16
6. Dados Técnicos	18
7. Dúvidas mais frequentes	19

1. Introdução

O Nexus II é um medidor de energia elétrica para sistemas trifásicos e monofásicos com mais de 40 parametros eletricos. Apropriado para montagem em porta de painel, conta com uma IHM de LED vermelha, de fácil visualização com teclado e quatro botões para navegação e configuração do medidor, além da interface de comunicação RS 485 Modbus RTU, que permite aquisição remota das medições via software supervisório ou através do software IBIS. Este último permite, ainda, a configuração remota do medidor.

2. Instalação

Este capítulo apresenta o procedimento de instalação. Recomendamos a leitura cuidadosa de todo seu conteúdo, para a correta operação do medidor.

Confira se todas as tensões e correntes foram conectadas em conformidade com os diagramas, inclusive sequências de fases. Certifique-se da alimentação do medidor (terminais 13 e 14) e de que todos os sinais de entrada estejam dentro de suas respectivas faixas de operação.

2.1. Visão geral

A figura 1 mostra o painel frontal e seus elementos principais e a figura 2 mostra o painel traseiro.

Figura 1. Painel frontal

Somente profissionais qualificados para o trabalho com eletricidade podem executar a instalação.

O produto pode operar com tensão elétrica, o que resulta em riscos elétricos capazes de lesionar alguém.

2.2. Esquema de ligações

Esta subseção mostra os diagramas de fiação. Os principais diagramas de conexão estão nas figuras de 3 a 7.

Figura 3. Sistema trifásico com neutro e 3 TCs

Figura 4. Sistema trifásico sem neutro e com 3 TCs.

Figura 6. Sistema trifásico sem neutro e com 1 TC.

O Nexus II é acoplado à porta do painel com um par de grampos. A figura 8 mostra os diagramas de montagem e um corte do painel para a montagem.

Figura 5. Sistema trifásico sem neutro e com 2 TCs.

Figura 7. Conexão monofásica.

Figura 8. Montagem em porta de painel.

3. Interface do usuário

3.1. Visão geral

Este capítulo mostra a interface de usuário do Nexus II. A tabela 1 mostra todas as

Variável	Acesso
Tensão L1 e Neutro	IHM/Modbus
Tensão L2 e Neutro	IHM/Modbus
Tensão L3 e Neutro	IHM/Modbus
Tensões L1 e L2	IHM/Modbus
Tensões L2 e L3	IHM/Modbus
Tensões L3 e L1	IHM/Modbus
Corrente I1	IHM/Modbus
Corrente I2	IHM/Modbus
Corrente 13	IHM/Modbus
Corrente de neutro	IHM/Modbus
Potência Ativa P1	IHM/Modbus
Potência Ativa P2	IHM/Modbus
Potência Ativa P3	IHM/Modbus
Potência Ativa Total TP	IHM/Modbus
Potência Reativa Q1	IHM/Modbus
Potência Reativa Q2	IHM/Modbus
Potência Reativa Q3	IHM/Modbus
Potência Reativa Total QT	IHM/Modbus
Potência Aparente S1	IHM/Modbus
Potência Aparente S2	IHM/Modbus
Potência Aparente S3	IHM/Modbus
Potência Aparente Total ST	IHM/Modbus
Fator de Potência 1	IHM/Modbus
Fator de Potência 2	IHM/Modbus
Fator de Potência 3	IHM/Modbus
Fator de Potência T	IHM/Modbus
Frequência	IHM/Modbus
Energia ativa consumida total	IHM/Modbus
Energia ativa fornecida total	IHM/Modbus
Energia reativa consumida total	IHM/Modbus
Energia reativa fornecida total	IHM/Modbus

variáveis medidas e como acessá-las no medidor. A figura 9 mostra os elementos principais do display de LED.

Variável	Acesso
Energia Aparente Total	IHM/Modbus
Ângulo fi 1	Modbus
Ângulo fi 2	Modbus
Ângulo fi 3	Modbus
Ângulo fi t	Modbus
Demanda de corrente I1	IHM/Modbus
Demanda de corrente 12	IHM/Modbus
Demanda de corrente 13	IHM/Modbus
Demanda de Potência Ativa	IHM/Modbus
Demanda de Potência Reativa	IHM/Modbus
Demanda de Potência Aparente	IHM/Modbus
Ângulo da tensão na fase 1	Modbus
Ângulo da tensão na fase 2	Modbus
Ângulo da tensão na fase 3	Modbus
Ângulo da corrente na fase 1	Modbus
Ângulo da corrente na fase 2	Modbus
Ângulo da corrente na fase 3	Modbus
Cos fi 1	IHM/Modbus
Cos fi 2	IHM/Modbus
Cos fi 3	IHM/Modbus
Cos fi T	IHM/Modbus
THD U1	IHM/Modbus
THD U2	IHM/Modbus
THD U3	IHM/Modbus
THD I1	IHM/Modbus
THD I2	IHM/Modbus
THD I3	IHM/Modbus
THD I3	IHM/Modbus

Tabela 1. Lista das variáveis

Figura 9. Elementos do display

Conforme a figura 9, podemos dividir a tela em quatro elementos principais: sinal de menos, valores medidos mais textos de configuração, indicação da ordem de grandeza e LED do pulso de energia. O sinal de negativo só é habilitado para variáveis que possam apresentar valores negativos (potência ativa, potência reativa, fator de potência, demanda de potência ativa e demanda de potência reativa). A área de medições e textos tem quatro dígitos de sete segmentos com pontos decimais e pode apresentar valores numéricos ou textos para configuração e indicação. A área de ordem de grandeza pode mostrar a indicação "K" (kilo), "M" (Mega) ou "/" (por cento) para o valor medido no momento. O LED de energia pulsa em conformidade com o consumo de energia ativa.

A tela opera em dois modos básicos: indicação e configuração.

3.2. Indicação

O modo de indicação tem dois estados principais para todas as suas variáveis, menos para os valores de energia. Primeiro a IHM mostra a variável atual por alguns segundos, depois ela passa aos valores das variáveis atuais. As figuras 10 e 11 mostram os estados de indicação.

Figura 10. Variável atual

ABB	Nexus II
	.00K
12	58

Figura 11. Indicação do valor

Nas figuras 10 e 11 a tela mostra a potência ativa por fase, com as leituras P1 = 10,0kW, P2 = 12,50kW e P3 = 11,72kW.

Para a indicação de energia a tela só mostra o valor atual para um estado. A figura 12 ilustra a aparência da tela para esta situação.

Figura 12. Indicação de energia

Da figura 12 temos que a potência ativa consumida é de 1.234.567,8 kWh. A tabela 2 mostra os símbolos relativos às leituras para o modo de indicação.

Símbolo	Medida
1	Corrente de fase
In	Corrente de neutro
UP	Tensão de fase
UL	Tensão de linha
Ρ	Potência ativa
q	Potência reativa
S	Potência aparente
TP	Potência ativa total
qt	Potência reativa total
St	Potência aparente total
PF	Fator de potência
EP F	Energia ativa total avante (consumida)
EP r	Energia ativa total reversa (fornecida)
Eq F	Energia reativa total avante (consumida)
Eq r	Energia reativa total reversa (fornecida)
ES	Energia aparente total
dl	Demanda de corrente
dP	Demanda total de potência ativa
dq	Demanda total de potência reativa
dS	Demanda total de potência aparente
COS	Cosseno phi
COSt	Cosseno phi total
thd	Distorção Harmônica Total
Ub	Desbalanceamento

3.3 Configuração

A tela de configuração é acessível via botão "Loop". Para navegar pelos níveis do menu use os botões "Sobe" e "Desce". Use o botão "Enter" para entrar ou configurar uma área específica do menu.

O menu tem dois níveis, o fluxograma básico está ilustrado na figura 13.

Figura 13. Fluxograma básico dos Menus.

Conforme a figura 13, para acessar primeiro nível do menu é preciso apertar o botão "Loop". A partir deste nível é possível acessar o segundo nível, quando escolhida a opção "SET" com os botões "Sobe" ou "Desce" e apertando-se o botão "ENTER". A tabela 3 informa a função de cada opção no nível 1.

Opção do Menu	Medida
PASS	Acesso à área de senhas
SET	Acesso à área de configurações
IndC	Retorno à área de indicações

Tabela 3. Funções principais do nível 1

Tabela 2. Lista dos símbolos para medições

O menu de configuração permite conferir e configurar todos os parâmetros do medidor. Navega-se nesta tela com os botões "Sobe" e "Desce". A figura 14 mostra um exemplo de tela de configuração.

Figura 14. Exemplo de tela de configuração.

A figura 14 informa que a corrente no primário ("PC") do transformador de corrente é de 1,500 kA.

4. Configurações do medidor

Este capítulo ensina o procedimento de configuração do medidor. A partir do nível 2 do menu você pode conferir todos os parâmetros do medidor, mas para alterar suas configurações é preciso habilitar a configuração com uma senha.

4.1. Habilitando a configuração

A senha que habilita a configuração é sempre "182" e o usuário não pode alterá-la. Para digitar a senha, acesse a opção "PASS" no nível 1 do menu e aperte o botão "Enter", o número 0 piscará na tela. Aperte o botão "Sobe" e a tela mostrará o número 1, aperte "Desce" e a tela mostrará o número 10 piscando. A seguir, aperte "Sobe" até aparecer o número 18 piscando na tela. Aperte então novamente o botão "Desce" e a tela mostrará o valor 180. Por fim, aperte o botão "Sobe" até aparecer o valor 182 e aperte o botão "Enter".

4.2. Configurando o medidor

Para mudar os parâmetros do medidor é preciso habilitar a configuração (subseção 4.1). A tabela 4 mostra todos os parâmetros e suas funções.

4.2.1. Primário do TC

Para alterar o primário do TC escolha a opção "PC" no nível 2 do menu e aperte "Enter". O número 0 começará a piscar na tela. Em seguida, use o botão "Sobe" para aumentar o valor de 0 a 9 e aperte "Desce" para deslocar o valor para a esquerda (ex.: apertando "Desce" 5 vira 50). A vírgula é habilitada mediante incremento no número 9 e deslocada para a esquerda apertando-se

Parâmetro	Função
1P	Primário do TC
UP	Primário do TP
US	Secundário do TP
tPrd	Tipo de conexão
CE	Campo de energia
br	Baud rate da comunicação
bYtE	Formato de byte na comunicação
End	Endereço para comunicação
rF	Revisão do firmware
IdIO	Idioma
LEd1	LED do pulso de energia
CCnF	Contador de configuração crítica
t d	Templo do Display

Tabela 4. Parâmetros do medidor

"Desce". Com o valor certo na tela aperte "Enter" e use "Sobe" ou "Desce" para habilitar ou não a ordem de grandeza "K" (kilo). Conclua apertando "Enter" para confirmar o valor.

4.2.2. Primário do TP

Para alterar o primário do TP selecione a opção "PU" no nível 2 do menu e aperte "Enter". O número 0 começará a piscar na tela. Em seguida, use o botão "Sobe" para aumentar o valor de 0 a 9 e aperte "Desce" para deslocar o valor para a esquerda (ex.: apertando "Desce" 5 vira 50). A vírgula é habilitada mediante incremento no número 9 e deslocada para a esquerda apertando-se "Desce". Com o valor certo na tela aperte "Enter" e use "Sobe" ou "Desce" para habilitar ou não a ordem de grandeza "K" (kilo). Conclua apertando "Enter" para confirmar o valor.

4.2.3. Secundário do TP

Para alterar o secundário do TP selecione

a opção "SU" no nível 2 do menu e aperte "Enter". O número 0 começará a piscar na tela. Em seguida, use o botão "Sobe" para aumentar o valor de 0 a 9 e aperte "Desce" para deslocar o valor para a esquerda (ex.: apertando "Desce" 5 vira 50). A vírgula é habilitada mediante incremento no número 9 e deslocada para a esquerda apertando-se "Desce". Com o valor certo na tela aperte "Enter" e use "Sobe" ou "Desce" para habilitar ou não a ordem de grandeza "K" (kilo). Conclua apertando "Enter" para confirmar o valor.

4.2.4. Tipo de conexão

Para alterar o tipo de conexão selecione a opção "nEt" no nível 2 do menu e aperte "Enter". Use então os botões "Sobe" e "Desce" para mudar para o tipo de conexão desejado conforme a tabela 5 e aperte "Enter" para confirmar.

Parâmetro	Função
3n3E	Sistema trifásico com neutro
	e três TCs
3 3E	Sistema trifásico sem neutro
	e três TCs
3 2E	Sistema trifásico sem neutro
	e dois TCs
3 1E	Sistema trifásico sem neutro
	e um TC
1n1E	Sistema monofásico

Tabela 5. Tipos de conexões

4.2.5. Faixa de valores de energia

Para alterar a faixa de valores de energia selecione a opção "Er" no nível 2 do menu e aperte "Enter" . Use então os botões "Sobe" e "Desce" para selecionar a ordem de grandeza desejada K (kilo) ou M (Mega). A tabela 6 mostra a faixa de medições para cada opção.

Faixa de valores	Escala
de energia	
K (kilo)	099999,9 kWh
M (Mega)	099999,9 MWh

Tabela 6. Faixas de valores de energia

4.2.6. Baud rate

Para alterar a baud rate da comunicação selecione a opção "br" no nível 2 do menu e aperte "Enter" . Use então os botões "Sobe" e "Desce" para mudar para a baud rate desejada, conforme a tabela 7. Conclua confirmando com o botão "Enter".

Parâmetro	Descrição
4,8	4800bps
9,6	9600bps
19,2	19200bps
38,4	38400bps

Tabela 7. Baud rate

4.2.7. Formato do Byte

Para alterar o formato do byte para comunicação selecione a opção "bYtE" no nível 2 do menu e aperte "Enter". A seguir, use os botões "Sobe" e "Desce" para alterar para o formato desejado de byte, conforme a tabela 8 e termine apertando "Enter" para confirmar.

Parâmetro	Descrição
8n2	8 bits, sem paridade,
	dois bits de parada
8E1	8 bits, paridade par,
	um bit de parada
801	8 bits, paridade ímpar,
	um bit de parada
8n1	8 bits, sem paridade,
	um bit de parada

Tabela 8. Formato do byte

4.2.8. Endereço para comunicação

Para alterar o endereço de comunicação selecione a opção "Addr" no nível 2 do menu e aperte "Enter". O número 0 começará a piscar na tela. Em seguida, use o botão "Sobe" para aumentar o valor de 0 a 9 e aperte "Desce" para deslocar o valor para a esquerda (ex.: apertando "Desce" 5 vira 50). A faixa de endereços válidos para o escravo ModBus RTU vai de 1 a 247. Conclua apertando "Enter" para confirmar o valor.

4.2.9. Revisão do firmware

Este é um parâmetro do tipo apenas leitura, indicando a versão atual do firmware.

4.2.10. Idioma

Para alterar o idioma da IHM selecione a opção "LANnG" no nível 2 do menu e aperte "Enter". Use então os botões "Sobe" e "Desce" para escolher o idioma desejado conforme a tabela 9 e aperte "Enter" para confirmar.

Parâmetro	Descrição
En	Inglês
PT	Português

Tabela 9. Idioma

4.2.11. LED do pulso de energia

Para habilitar o LED de pulso de energia selecione a opção "LEd1" no nível 2 do menu e aperte "Enter". Use então os botões "Sobe" e "Desce" para escolher a opção desejada, conforme a tabela 10 e conclua apertando "Enter" para confirmar.

Parâmetro	Descrição
OFF	Desabilitado
EP	Potência ativa
	(frequência da piscada)
EQ	Potência reativa
	(frequência da piscada)

Tabela 10. LED do pulso de energia

12 Manual do usuário | Nexus II

4.2.12. Contador de configurações críticas

Parâmetro do tipo apenas leitura que conta quantas vezes os parâmetros críticos foram configurados. Parâmetros críticos são aqueles que impactam sobre os cálculos de energia, que são: primário do TC, primário do TP, secundário do TP, tipo de conexão e faixa de valores de energia. Essa ferramenta serve para controle das possíveis alterações indesejadas, por parte do usuário, que possam impactar sobre os cálculos de energia.

5. Comunicação

O Nexus II tem interface serial RS 485 com protocolo Modbus RTU. Este capítulo apresenta o protocolo, mapeando os registros e fatores de conversão.

5.1. Instalação

O medidor tem uma interface serial 485 de dois fios com conexão semi-duplex, que permite até 31 escravos na rede com um comprimento de rede máximo de 1200 m. Recomenda-se usar um par de cabos blindados torcidos e terminação de 120 Ohms no

Figura 15. Exemplo da diagrama de fiação.

início e no fim da rede. A figura 15 mostra um exemplo da diagrama de fiação para a rede.

5.2. Protocolo

A tabela 11 mostra os dados técnicos do protocolo de comunicação do Nexus II.

Protocolo	Modbus RTU
Comprimento	8
de dados	
Baud rate	4800, 9600, 19200 ou 38400
Paridade	Nenhuma, par ou ímpar
Bits de parada	1 ou 2
Faixa de endereços	1 a 247
Código de função	3 (ler no registro de retenção)
CRC	2 bytes

Tabela 11. Protocolo de comunicação

A tabela 12 mostra o quadro de solicitação da função 3 e a tabela 13 mostra o quadro de resposta correspondente.

Endereço	3	Parte alta	Parte baixa	Parte alta do	Parte baixa	Parte alta	Parte baixa
do escravo	(1 byte)	do endereço	do endereço	número de	do número de	do CRC	do CRC
(1 byte)		de início	de início	registradores	registradores	(1 byte)	(1 byte)
		(1 byte)	(1 byte)	(1byte)	(1byte)		

Tabela 12. Quadro de solicitação da função 3

Endereço	3	Contagem de	Valores de	Parte alta	Parte baixa
do escravo	(1 byte)	bytes	Registro	do CRC	do CRC
(1 byte)		(1 byte)		(1 byte)	(1 byte)

Tabela 13. Quadro de resposta da função 3

Em caso de envio de quadro inválido pelo mestre o medidor gerará uma resposta de exceção. A tabela 14 mostra o quadro da resposta de exceção e a tabela 15 os códigos de exceção.

Endereço	3	128 + Código	Código de	Parte alta	Parte baixa
do escravo	(1 byte)	da função	exceção	do CRC	do CRC
(1 byte)				(1 byte)	(1 byte)

Tabela 14. Quadro da resposta de exceção

Código de exceção	Descrição	
1	Função ilegal	
2	Endereço de dados ilegal	
3	Valor de dado ilegal	

Tabela 15. Códigos de exceção

A tabela 16 mostra o mapeamento dos registros.

Registro	Fator de conversão	Tipo dos dados	Variável
100	16384 = Valor Nominal	Unsigned word*	Tensão L1 e Neutro
101	16384 = Valor Nominal	Unsigned word*	Tensão L2 e Neutro
102	16384 = Valor Nominal	Unsigned word*	Tensão L3 e Neutro
103	16384 = Valor Nominal	Unsigned word*	Tensões L1 e L2
104	16384 = Valor Nominal	Unsigned word*	Tensões L2 e L3
105	16384 = Valor Nominal	Unsigned word*	Tensões L3 e L1
106	16384 = Valor Nominal	Unsigned word*	Corrente I1
107	16384 = Valor Nominal	Unsigned word*	Corrente I2
108	16384 = Valor Nominal	Unsigned word*	Corrente I3
109	16384 = Valor Nominal	Unsigned word*	Corrente de neutro
110	16384 = Valor Nominal	Signed word*	Potência Ativa P1
111	16384 = Valor Nominal	Signed word*	Potência Ativa P2
112	16384 = Valor Nominal	Signed word*	Potência Ativa P3
113	16384 = Valor Nominal	Signed word*	Potência Ativa Total TP
114	16384 = Valor Nominal	Signed word*	Potência Reativa Q1
115	16384 = Valor Nominal	Signed word*	Potência Reativa Q2
116	16384 = Valor Nominal	Signed word*	Potência Reativa Q3
117	16384 = Valor Nominal	Signed word*	Potência Reativa Total QT
118	16384 = Valor Nominal	Unsigned word*	Potência Aparente S1
119	16384 = Valor Nominal	Unsigned word*	Potência Aparente S2
120	16384 = Valor Nominal	Unsigned word*	Potência Aparente S3
121	16384 = Valor Nominal	Unsigned word*	Potência Aparente Total ST
122	16384 = Valor Nominal	Signed word*	Fator de Potência 1

Registro	Fator de conversão	Tipo dos dados	Variável
123	16384 = Valor Nominal	Signed word*	Fator de Potência 2
124	16384 = Valor Nominal	Signed word*	Fator de Potência 3
125	16384 = Valor Nominal	Signed word*	Fator de Potência T
126	2000H = 50 Hz	Unsigned word*	Frequência
127	1 = 1 MWh	Unsigned word*	Energia ativa importada em MWh
128	1 = 1 kWh	Unsigned word*	Energia ativa importada em kWh
129	1 = 1 Wh	Unsigned word*	Energia ativa importada em Wh
130	1 = 1 MVArh	Unsigned word*	Energia reativa importada em MVArh
131	1 = 1 kVArh	Unsigned word*	Energia reativa importada em kVArh
132	1 = 1 VArh	Unsigned word*	Energia reativa importada em VArh
133	1 = 1 MWh	Unsigned word*	Energia ativa exportada em MWh
134	1 = 1 kWh	Unsigned word*	Energia ativa exportada em kWh
135	1 = 1 Wh	Unsigned word*	Energia ativa exportada em Wh
136	1 = 1 MVArh	Unsigned word*	Energia reativa exportada em MVArh
137	1 = 1 kVArh	Unsigned word*	Energia reativa exportada em kVArh
138	1 = 1 VArh	Unsigned word*	Energia reativa exportada em VArh *1
139	16384 = 360	Unsigned word*	Ângulo phi 1
140	16384 = 360	Unsigned word*	Ângulo phi 2
141	16384 = 360	Unsigned word*	Ângulo phi 3
142	16384 = 360	Unsigned word*	Ângulo phi t
143	16384 = Valor Nominal	Unsigned word*	Demanda de corrente I1
144	16384 = Valor Nominal	Unsigned word*	Demanda de corrente I2
145	16384 = Valor Nominal	Unsigned word*	Demanda de corrente I3
146	16384 = Valor Nominal	Signed word*	Demanda de Potência Real
147	16384 = Valor Nominal	Signed word*	Demanda de Potência Reativa
148	16384 = Valor Nominal	Unsigned word*	Demanda de Potência Aparente
149	16384 = Valor Nominal	Unsigned word*	Ângulo de Fase da Tensão 1
150	16384 = Valor Nominal	Unsigned word*	Ângulo de Fase da Tensão 2
151	16384 = Valor Nominal	Unsigned word*	Ângulo de Fase da Tensão 3
152	16384 = Valor Nominal	Unsigned word*	Ângulo de Fase da Corrente 1
153	16384 = Valor Nominal	Unsigned word*	Ângulo de Fase da Corrente 2
154	16384 = Valor Nominal	Unsigned word*	Ângulo de Fase da Corrente 3
155	16384 = Valor Nominal	Signed word*	Cos phi 1
156	16384 = Valor Nominal	Signed word*	Cos phi 2
157	16384 = Valor Nominal	Signed word*	Cos phi 3
158	16384 = Valor Nominal	Signed word*	Cos phi T
159	16384 = Valor Nominal	Unsigned word*	THD U1
160	16384 = Valor Nominal	Unsigned word*	THD U2
161	16384 = Valor Nominal	Unsigned word*	THD U3
162	16384 = Valor Nominal	Unsigned word*	THD I1
163	16384 = Valor Nominal	Unsigned word*	THD I2

Registro	Fator de conversão	Tipo dos dados	Variável
164	16384 = Valor Nominal	Unsigned word*	THD 13
165	1 = 1 MVAh	Unsigned word*	Energia aparente em MVAh
166	1 = 1 kVAh	Unsigned word*	Energia aparente em kVAh
167	1 = 1 VAh	Unsigned word*	Energia aparente em VAh
168	16384 = Valor Nominal	Unsigned word	Desbalanceamento entre tensões
			de fase
169	16384 = Valor Nominal	Unsigned word	Desbalanceamento entre tensões
			de linha
170	16384 = Valor Nominal	Unsigned word	Desbalanceamento entre correntes

Tabela 16. Mapeamento dos registros

* Dados de 16 bits.

* Dados de 16 bits.

A tabela 17 mostra os registros para leitura da configuração do medidor.

Registro	Fator de conversão	Tipo dos dados	Variável
80	Valor Inteiro	Unsigned word*	Primário do TC
81	0, 1, 2 ou 3	Unsigned word*	Quantidade de casas decimais para o primário do TC
82	0 (A), 3 (kA)	Unsigned word*	Ordem de grandeza para o TC
83	Valor Inteiro	Unsigned word*	Primário do TP
84	0, 1, 2 ou 3	Unsigned word*	Quantidade de casas decimais
			para o primário do TP
85	0 (V), 3 (kV)	Unsigned word*	Ordem de grandeza para o TP
86	Valor Inteiro	Unsigned word*	Potência nominal
87	0, 1, 2 ou 3	Unsigned word*	Quantidade de casas decimais
			da potência
88	0 (W), 3 (kW) ou 6 (MW)	Unsigned word*	Ordem de grandeza da potência

Tabela 17. Mapeamento dos registros de configuração

5.3. Fatores de conversão

Esta subseção mostra como converter os valores da tabela de registros em valores de unidades de engenharia.

Fórmula básica

$$V_m = \frac{V_{Modbus}.V_r}{16384}$$
(1)

Onde:

- V_m: Valor da leitura em unidades de engenharia
- V_{Modbus}: Valor Inteiro (2 bytes) obtido da rede Modbus.

V_r: Valor de referência

Tensão Fase-Neutro

Use a fórmula 1.

V_r: Valor fase-neutro configurado do primário do TP

Tensão de Fase-Fase

Use a fórmula 1.

 V_r : Valor de fase-fase configurado do primário do TP x $\sqrt{3}$

Corrente de fase, corrente de neutro e demanda de corrente

Use a equação 1.

V_r: Valor configurado do primário do TC

Potência (ativa, reativa e aparente)

Use a fórmula 1.

V_r: (Fase-neutro no primário do TP) x (Primário do TC)

Atenção: Valor algébrico (este valor é sinalizado)

Potência total e demanda de potência (Real, reativa e aparente)

Use a equação 1.

V_r: 3 x (Fase-neutro do primário do TP) x (Primário do TC)

Atenção: Valor algébrico (este valor é sinalizado)

Fator de Potência e cos phi Use a fórmula 1.

 $V_r: 1$

Atenção: Valor algébrico (este valor é sinalizado)

Frequência

Use a fórmula 1.

V_r: 100

Energia Ativa

$$V_m = V_{Modbus} (MWh).1000 + V_{Modbus} (kWh) + \frac{V_{Modbus} (Vh)}{1000}$$

Energia Reativa

$$V_m = V_{Modbus} (MV Arh).1000 + V_{Modbus} (kV Arh) + \frac{V_{Modbus} (V Arh)}{1000}$$

Energia Aparente

$$V_m = V_{Modbus} (MVAh).1000 + V_{Modbus} (kVAh) + \frac{V_{Modbus} (VAh)}{1000}$$

Ângulos Use a fórmula 1.

V_r: 360

THD e desbalanceamento

Use a fórmula 1.

V_r: 100

6. Dados Técnicos

Amostras por	64	Peso	0,35kg
ciclo		Vibração	Amplitude: 0,35 mm, frequência
Harmônicas	Até 31ª		= 25Hz, em conformidade com
Faixa de tensões	50300 V Fase-Neutro,		a IEC61557-12
	86515 V Fase-Fase	Temperatura de	-25+70 °C
Corrente nominal	1A, 5A	trabalho	
Faixa de corren-	50mA6A	Temperatura de	-25+70 °C
tes		funcionamento	
Consumo	Entrada de tensão: ≤ 1mA.	Temperatura	-40+85 °C
	Entrada de corrente: ≤ 0,2VA.	de transporte e	
Frequência	50; 60 Hz ±10%	estocagem	
Comunicação	Interface serial RS485,	Umidade	75%
	protocolo Modbus RTU	Altitude	2000m
Normas	IEC 61557-12	Categoria de	CAT III
	IEC 61010-1	medição	
Dimensões	96 x 96 mm, 112 mm de	Grau de poluição	11
	profundidade	Grau de proteção	II (isolação dupla)
Fixação	Par de grampos		
Grau de proteção	Alojamento: IP50		
(IP)	Bornes de ligação: IP20		

Dimensões

7. Dúvidas mais frequentes

1. O instrumento não liga

Confira a alimentação auxiliar, veja se todos os sinais de entrada estão corretos e se todas as faixas dos valores de entrada estão dentro dos limites do dispositivo.

2. O instrumento não registra valores

1. Confira os fusíveis e disjuntores da instalação.

2. Verifique se a tensão e a corrente de entrada estão dentro dos limites especificados nos dados técnicos do instrumento.

3. Com um voltímetro, confira se há tensão entre os terminais:

- a. 2 e 11 para a fase R b. 5 e 11 para a fase S
- b. 5 e l i para a lase 5
- c. 8 e 11 para a fase T

4. Com um amperímetro, confira se há corrente nos terminais 1, 3, 4, 6,7 e 9 do medidor.

3. O instrumento mostra valores incoerentes

1. Verifique o item 2 deste FAQ.

2. Confira se todos os parâmetros (TC, TP e tipo de conexão) estão corretamente configurados, em conformidade com a instalação.

 Verifique se os sinais de potência ativa, potência reativa e fator de potência estão compatíveis com a aplicação.

4. Verifique se as tensões e correntes estão conectadas corretamente (item 2) e

seus valores estão dentro dos limites das fichas de dados. Normalmente, para valores inconsistentes de fator de potência há variação de fase nas correntes, inversão do TC ou corrente inferior ao mínimo valor medido.

4. O instrumento não se comunica

1- Verifique se todos os parâmetros e conexões de comunicação estão corretos.

2- Verifique se a infraestrutura instalada está em conformidade com os requisitos da rede.

5. O instrumento mostra valores de energia errados

1. Verifique os itens 2 e 3 deste FAQ.

2. Verifique se a faixa de valores de energia está correta.

Contato

ABB Ltda Produtos para Eletrificação

Contact center: 0800 0 14 9111 / abb.atende@br.abb.com Dúvidas sobre produtos, serviços e contatos ABB. www.abb.com.br

São Paulo - SP Avenida do Anastácio, 740 - City América 05119-900 - São Paulo - SP Fone: (11) 3688-9000

Guarulhos - SP Av. Monteiro Lobato, 3411 - Vila São Roque 07190-904 - Guarulhos - SP Fone: (11) 2432-8000

Sorocaba - SP Rod. Senador Jose Ermirio de Moraes, km 11, s/n - Aparecidinha 18087-125 - Sorocaba - SP Fone: (15) 3330-6150

Blumenau - SC Rua Dr. Pedro Zimmermann, 5470 - Itoupava Central 89068-000 - Blumenau - SC Fone: (47) 3221-3100 / 3221-3119

